We have a classic coupled system:
Block 1: mass m 1 = 2.45 kg m_1 = 2.45\,\text{kg} m 1 = 2.45 kg on a rough ramp at θ = 30 ∘ \theta = 30^\circ θ = 3 0 ∘ .
Block 2: mass m 2 = 5.80 kg m_2 = 5.80\,\text{kg} m 2 = 5.80 kg hanging vertically.
Pulley: solid disk, radius R = 0.25 m R = 0.25\,\text{m} R = 0.25 m , mass M = 10.0 kg M = 10.0\,\text{kg} M = 10.0 kg .
Coefficient of kinetic friction: μ k = 0.360 \mu_k = 0.360 μ k = 0.360 for both surfaces.
String is massless but the pulley has rotational inertia, so tensions differ on each side.
We want:
The magnitude of the common acceleration a a a of the blocks.
The tension on the left side of the pulley (ramp side), T 1 T_1 T 1 .
The tension on the right side of the pulley (hanging side), T 2 T_2 T 2 .
1. Force analysis and directions
We assume (and later confirm) that:
Block m 2 m_2 m 2 moves downward .
Block m 1 m_1 m 1 moves up the ramp .
Choose positive directions :
For m 1 m_1 m 1 : along the ramp, up the incline .
For m 2 m_2 m 2 : downward .
For rotation of the pulley: direction corresponding to m 2 m_2 m 2 going down is positive (so side with T 2 T_2 T 2 tends to rotate it).
Forces on m 1 m_1 m 1 (on the ramp)
Along the incline:
Tension T 1 T_1 T 1 up the ramp.
Gravity component m 1 g sin θ m_1 g \sin\theta m 1 g sin θ down the ramp.
Kinetic friction f k 1 f_{k1} f k 1 down the ramp (because motion is up the ramp).
Normal force: N 1 = m 1 g cos θ N_1 = m_1 g \cos\theta N 1 = m 1 g cos θ .
Friction:
f k 1 = μ k N 1 = μ k m 1 g cos θ f_{k1} = \mu_k N_1 = \mu_k m_1 g \cos\theta f k 1 = μ k N 1 = μ k m 1 g cos θ
Newton's 2nd law along the ramp (positive up-slope):
T 1 − m 1 g sin θ − f k 1 = m 1 a T_1 - m_1 g \sin\theta - f_{k1} = m_1 a T 1 − m 1 g sin θ − f k 1 = m 1 a
Substitute f k 1 f_{k1} f k 1 :
T 1 − m 1 g sin θ − μ k m 1 g cos θ = m 1 a (1) T_1 - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = m_1 a \tag{1} T 1 − m 1 g sin θ − μ k m 1 g cos θ = m 1 a ( 1 )
Forces on m 2 m_2 m 2 (hanging)
Take downward as positive:
Gravity m 2 g m_2 g m 2 g (downward, +)
Tension T 2 T_2 T 2 upward (negative).
Newton's 2nd law:
m 2 g − T 2 = m 2 a (2) m_2 g - T_2 = m_2 a \tag{2} m 2 g − T 2 = m 2 a ( 2 )
Rotation of the pulley
A solid disk has moment of inertia
I = 1 2 M R 2 I = \frac{1}{2} M R^2 I = 2 1 M R 2
Torques about the center (positive in direction of T 2 T_2 T 2 creating the motion):
Torque from T 2 T_2 T 2 : + T 2 R +T_2 R + T 2 R .
Torque from T 1 T_1 T 1 : − T 1 R -T_1 R − T 1 R .
Net torque:
( T 2 − T 1 ) R = I α (T_2 - T_1) R = I \alpha ( T 2 − T 1 ) R = I α
No slipping of the string, so
a = α R ⟹ α = a R a = \alpha R \implies \alpha = \frac{a}{R} a = α R ⟹ α = R a
Thus
( T 2 − T 1 ) R = I a R (T_2 - T_1) R = I \frac{a}{R} ( T 2 − T 1 ) R = I R a
T 2 − T 1 = I R 2 a = 1 2 M R 2 R 2 a = 1 2 M a (3) T_2 - T_1 = \frac{I}{R^2} a = \frac{\tfrac{1}{2} M R^2}{R^2} a = \frac{1}{2} M a \tag{3} T 2 − T 1 = R 2 I a = R 2 2 1 M R 2 a = 2 1 M a ( 3 )
Now we have 3 unknowns a , T 1 , T 2 a, T_1, T_2 a , T 1 , T 2 and 3 equations (1), (2), (3).
2. Solve symbolically
From (2):
T 2 = m 2 g − m 2 a (2’) T_2 = m_2 g - m_2 a \tag{2'} T 2 = m 2 g − m 2 a ( 2’ )
From (1):
T 1 = m 1 a + m 1 g sin θ + μ k m 1 g cos θ (1’) T_1 = m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta \tag{1'} T 1 = m 1 a + m 1 g sin θ + μ k m 1 g cos θ ( 1’ )
Plug (1') and (2') into (3):
( m 2 g − m 2 a ) − ( m 1 a + m 1 g sin θ + μ k m 1 g cos θ ) = 1 2 M a (m_2 g - m_2 a) - (m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta) = \frac{1}{2} M a ( m 2 g − m 2 a ) − ( m 1 a + m 1 g sin θ + μ k m 1 g cos θ ) = 2 1 M a
Group terms in a a a and constant terms:
m 2 g − m 1 g sin θ − μ k m 1 g cos θ − m 2 a − m 1 a = 1 2 M a m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta - m_2 a - m_1 a = \frac{1}{2} M a m 2 g − m 1 g sin θ − μ k m 1 g cos θ − m 2 a − m 1 a = 2 1 M a
Move all a a a terms to one side:
m 2 g − m 1 g sin θ − μ k m 1 g cos θ = m 2 a + m 1 a + 1 2 M a m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = m_2 a + m_1 a + \frac{1}{2} M a m 2 g − m 1 g sin θ − μ k m 1 g cos θ = m 2 a + m 1 a + 2 1 M a
Factor a a a on the right:
m 2 g − m 1 g sin θ − μ k m 1 g cos θ = ( m 1 + m 2 + 1 2 M ) a m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = \left(m_1 + m_2 + \tfrac{1}{2} M \right) a m 2 g − m 1 g sin θ − μ k m 1 g cos θ = ( m 1 + m 2 + 2 1 M ) a
So
a = m 2 g − m 1 g sin θ − μ k m 1 g cos θ m 1 + m 2 + 1 2 M (4) a = \dfrac{m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta}{m_1 + m_2 + \tfrac{1}{2} M} \tag{4} a = m 1 + m 2 + 2 1 M m 2 g − m 1 g sin θ − μ k m 1 g cos θ ( 4 )
Then use (1') and (2') to get T 1 , T 2 T_1, T_2 T 1 , T 2 .
3. Numerical evaluation
Use:
m 1 = 2.45 kg m_1 = 2.45\,\text{kg} m 1 = 2.45 kg
m 2 = 5.80 kg m_2 = 5.80\,\text{kg} m 2 = 5.80 kg
M = 10.0 kg M = 10.0\,\text{kg} M = 10.0 kg
θ = 30 ∘ \theta = 30^\circ θ = 3 0 ∘ : sin 30 ∘ = 0.5 \sin 30^\circ = 0.5 sin 3 0 ∘ = 0.5 , cos 30 ∘ = 3 / 2 ≈ 0.866 \cos 30^\circ = \sqrt{3}/2 \approx 0.866 cos 3 0 ∘ = 3 /2 ≈ 0.866
μ k = 0.360 \mu_k = 0.360 μ k = 0.360
g ≈ 9.80 m/s 2 g \approx 9.80\,\text{m/s}^2 g ≈ 9.80 m/s 2 (you can also use 9.81; the result changes slightly)
Compute the denominator
m 1 + m 2 + 1 2 M = 2.45 + 5.80 + 0.5 ⋅ 10.0 = 2.45 + 5.80 + 5.00 = 13.25 kg m_1 + m_2 + \tfrac{1}{2} M = 2.45 + 5.80 + 0.5 \cdot 10.0 = 2.45 + 5.80 + 5.00 = 13.25\,\text{kg} m 1 + m 2 + 2 1 M = 2.45 + 5.80 + 0.5 ⋅ 10.0 = 2.45 + 5.80 + 5.00 = 13.25 kg
Compute the numerator
First, compute each term:
m 2 g ≈ 5.80 ⋅ 9.80 ≈ 56.84 N m_2 g \approx 5.80 \cdot 9.80 \approx 56.84\,\text{N} m 2 g ≈ 5.80 ⋅ 9.80 ≈ 56.84 N
m 1 g sin θ ≈ 2.45 ⋅ 9.80 ⋅ 0.5 ≈ 2.45 ⋅ 4.9 ≈ 12.0 N m_1 g \sin\theta \approx 2.45 \cdot 9.80 \cdot 0.5 \approx 2.45 \cdot 4.9 \approx 12.0\,\text{N} m 1 g sin θ ≈ 2.45 ⋅ 9.80 ⋅ 0.5 ≈ 2.45 ⋅ 4.9 ≈ 12.0 N
μ k m 1 g cos θ ≈ 0.360 ⋅ 2.45 ⋅ 9.80 ⋅ 0.866 \mu_k m_1 g \cos\theta \approx 0.360 \cdot 2.45 \cdot 9.80 \cdot 0.866 μ k m 1 g cos θ ≈ 0.360 ⋅ 2.45 ⋅ 9.80 ⋅ 0.866 .
2.45 ⋅ 9.80 ≈ 24.01 2.45 \cdot 9.80 \approx 24.01 2.45 ⋅ 9.80 ≈ 24.01
24.01 ⋅ 0.866 ≈ 20.8 24.01 \cdot 0.866 \approx 20.8 24.01 ⋅ 0.866 ≈ 20.8
0.360 ⋅ 20.8 ≈ 7.5 N 0.360 \cdot 20.8 \approx 7.5\,\text{N} 0.360 ⋅ 20.8 ≈ 7.5 N (approx).
So the numerator is
m 2 g − m 1 g sin θ − μ k m 1 g cos θ ≈ 56.84 − 12.0 − 7.5 ≈ 37.3 N m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta \approx 56.84 - 12.0 - 7.5 \approx 37.3\,\text{N} m 2 g − m 1 g sin θ − μ k m 1 g cos θ ≈ 56.84 − 12.0 − 7.5 ≈ 37.3 N
Acceleration
a ≈ 37.3 13.25 ≈ 2.8 m/s 2 a \approx \frac{37.3}{13.25} \approx 2.8\,\text{m/s}^2 a ≈ 13.25 37.3 ≈ 2.8 m/s 2
So the magnitude of the acceleration is about
a ≈ 2.82 m/s 2 a \approx 2.82\,\text{m/s}^2 a ≈ 2.82 m/s 2 (depending on rounding).
Direction:
m 2 m_2 m 2 moves downward .
m 1 m_1 m 1 moves up the ramp .
Tensions
Using a ≈ 2.82 m/s 2 a \approx 2.82\,\text{m/s}^2 a ≈ 2.82 m/s 2 .
From (2′ ' ′ ):
T 2 = m 2 g − m 2 a ≈ 5.80 ( 9.80 − 2.82 ) ≈ 5.80 ⋅ 6.98 ≈ 40.5 N T_2 = m_2 g - m_2 a \approx 5.80(9.80 - 2.82) \approx 5.80 \cdot 6.98 \approx 40.5\,\text{N} T 2 = m 2 g − m 2 a ≈ 5.80 ( 9.80 − 2.82 ) ≈ 5.80 ⋅ 6.98 ≈ 40.5 N
So T 2 ≈ 40 – 41 N T_2 \approx 40\text{–}41\,\text{N} T 2 ≈ 40 – 41 N .
From (1′ ' ′ ):
T 1 = m 1 a + m 1 g sin θ + μ k m 1 g cos θ T_1 = m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta T 1 = m 1 a + m 1 g sin θ + μ k m 1 g cos θ
m 1 a ≈ 2.45 ⋅ 2.82 ≈ 6.9 N m_1 a \approx 2.45 \cdot 2.82 \approx 6.9\,\text{N} m 1 a ≈ 2.45 ⋅ 2.82 ≈ 6.9 N
m 1 g sin θ ≈ 12.0 N m_1 g \sin\theta \approx 12.0\,\text{N} m 1 g sin θ ≈ 12.0 N (from above)
μ k m 1 g cos θ ≈ 7.5 N \mu_k m_1 g \cos\theta \approx 7.5\,\text{N} μ k m 1 g cos θ ≈ 7.5 N (from above)
Then
T 1 ≈ 6.9 + 12.0 + 7.5 ≈ 26.4 N T_1 \approx 6.9 + 12.0 + 7.5 \approx 26.4\,\text{N} T 1 ≈ 6.9 + 12.0 + 7.5 ≈ 26.4 N
So numerically (rounded):
Acceleration : a ≈ 2.8 m/s 2 a \approx 2.8\,\text{m/s}^2 a ≈ 2.8 m/s 2 (magnitude)
Tension (left / ramp side) : T 1 ≈ 26 N T_1 \approx 26\,\text{N} T 1 ≈ 26 N
Tension (right / hanging side) : T 2 ≈ 41 N T_2 \approx 41\,\text{N} T 2 ≈ 41 N
The difference T 2 − T 1 T_2 - T_1 T 2 − T 1 is what produces the angular acceleration of the massive pulley.
4. What the visualization shows
Use the controls to:
Change m 1 , m 2 , M , μ k , θ m_1, m_2, M, \mu_k, \theta m 1 , m 2 , M , μ k , θ .
See blocks move in real time.
Watch friction and gravity components on m 1 m_1 m 1 along the ramp.
Watch both tensions and the net torque on the pulley.
Conceptually:
Increasing m 2 m_2 m 2 makes the system accelerate more.
Increasing m 1 m_1 m 1 , μ k \mu_k μ k , or θ \theta θ (to increase m 1 g sin θ m_1 g\sin\theta m 1 g sin θ ) can slow or even reverse the motion.
Increasing M M M (the pulley's inertia) does not change the net driving force , but it makes more mass "participate" in acceleration, so a a a becomes smaller for the same forces.
You can also use the "Show Field Lines" toggle to overlay a simplified diagram of force components along the ramp for m 1 m_1 m 1 , helping connect the algebra to the geometry of the situation.