We model the motion of the ball as standard 2D projectile motion with an initial height.
1. Problem Setup
A ball is thrown from the top of a building:
Building height: h 0 = 50 m h_0 = 50\,\text{m} h 0 = 50 m
Initial speed: v 0 = 20 m/s v_0 = 20\,\text{m/s} v 0 = 20 m/s
Launch angle: θ = 60 ∘ \theta = 60^\circ θ = 6 0 ∘
Gravitational acceleration: g = 9.8 m/s 2 g = 9.8\,\text{m/s}^2 g = 9.8 m/s 2 (downwards)
We assume no air resistance and take:
Horizontal axis x x x : forward direction from the base of the building.
Vertical axis y y y : height above the ground.
Initial position and velocity:
x ( 0 ) = 0 x(0) = 0 x ( 0 ) = 0
y ( 0 ) = h 0 = 50 y(0) = h_0 = 50 y ( 0 ) = h 0 = 50
v 0 x = v 0 cos θ v_{0x} = v_0 \cos\theta v 0 x = v 0 cos θ
v 0 y = v 0 sin θ v_{0y} = v_0 \sin\theta v 0 y = v 0 sin θ
For the given values:
cos 60 ∘ = 1 2 , sin 60 ∘ = 3 2 \cos 60^\circ = \tfrac{1}{2},\quad \sin 60^\circ = \tfrac{\sqrt{3}}{2} cos 6 0 ∘ = 2 1 , sin 6 0 ∘ = 2 3
So:
v 0 x = 20 ⋅ 1 2 = 10 m/s v 0 y = 20 ⋅ 3 2 = 10 3 ≈ 17.32 m/s \begin{aligned}
v_{0x} &= 20 \cdot \tfrac{1}{2} = 10\,\text{m/s} \\
v_{0y} &= 20 \cdot \tfrac{\sqrt{3}}{2} = 10\sqrt{3} \approx 17.32\,\text{m/s}
\end{aligned} v 0 x v 0 y = 20 ⋅ 2 1 = 10 m/s = 20 ⋅ 2 3 = 10 3 ≈ 17.32 m/s
2. Equations of Motion
The parametric equations for projectile motion (with constant gravity) are:
x ( t ) = v 0 x t y ( t ) = h 0 + v 0 y t − 1 2 g t 2 \begin{aligned}
x(t) &= v_{0x} t \\
y(t) &= h_0 + v_{0y} t - \tfrac{1}{2} g t^2
\end{aligned} x ( t ) y ( t ) = v 0 x t = h 0 + v 0 y t − 2 1 g t 2
Substitute the values:
x ( t ) = 10 t y ( t ) = 50 + 17.32 t − 4.9 t 2 \begin{aligned}
x(t) &= 10 t \\
y(t) &= 50 + 17.32 t - 4.9 t^2
\end{aligned} x ( t ) y ( t ) = 10 t = 50 + 17.32 t − 4.9 t 2
We want to find when it hits the ground , i.e. when y ( t ) = 0 y(t) = 0 y ( t ) = 0 .
3. Solve for Time of Impact
Set y ( t ) = 0 y(t) = 0 y ( t ) = 0 :
50 + 17.32 t − 4.9 t 2 = 0 50 + 17.32 t - 4.9 t^2 = 0 50 + 17.32 t − 4.9 t 2 = 0
Rewriting in standard quadratic form:
− 4.9 t 2 + 17.32 t + 50 = 0 -4.9 t^2 + 17.32 t + 50 = 0 − 4.9 t 2 + 17.32 t + 50 = 0
Multiply by − 1 -1 − 1 :
4.9 t 2 − 17.32 t − 50 = 0 4.9 t^2 - 17.32 t - 50 = 0 4.9 t 2 − 17.32 t − 50 = 0
Use the quadratic formula for a t 2 + b t + c = 0 at^2 + bt + c = 0 a t 2 + b t + c = 0 :
t = − b ± b 2 − 4 a c 2 a t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} t = 2 a − b ± b 2 − 4 a c
Here:
a = 4.9 , b = − 17.32 , c = − 50 a = 4.9,\quad b = -17.32,\quad c = -50 a = 4.9 , b = − 17.32 , c = − 50
So:
t = − ( − 17.32 ) ± ( − 17.32 ) 2 − 4 ( 4.9 ) ( − 50 ) 2 ( 4.9 ) = 17.32 ± 17.32 2 + 4 ⋅ 4.9 ⋅ 50 9.8 \begin{aligned}
t &= \frac{-(-17.32) \pm \sqrt{(-17.32)^2 - 4(4.9)(-50)}}{2(4.9)} \\
&= \frac{17.32 \pm \sqrt{17.32^2 + 4\cdot4.9\cdot50}}{9.8}
\end{aligned} t = 2 ( 4.9 ) − ( − 17.32 ) ± ( − 17.32 ) 2 − 4 ( 4.9 ) ( − 50 ) = 9.8 17.32 ± 17.3 2 2 + 4 ⋅ 4.9 ⋅ 50
Compute the discriminant:
17.32 2 ≈ 299.8 4 ⋅ 4.9 ⋅ 50 = 980 ⇒ Δ ≈ 299.8 + 980 = 1279.8 \begin{aligned}
17.32^2 &\approx 299.8 \\
4\cdot4.9\cdot50 &= 980 \\
\Rightarrow \Delta &\approx 299.8 + 980 = 1279.8
\end{aligned} 17.3 2 2 4 ⋅ 4.9 ⋅ 50 ⇒ Δ ≈ 299.8 = 980 ≈ 299.8 + 980 = 1279.8
1279.8 ≈ 35.78 \sqrt{1279.8} \approx 35.78 1279.8 ≈ 35.78
Therefore:
t 1 = 17.32 + 35.78 9.8 ≈ 53.10 9.8 ≈ 5.42 s t 2 = 17.32 − 35.78 9.8 ≈ − 18.46 9.8 ≈ − 1.88 s \begin{aligned}
t_1 &= \frac{17.32 + 35.78}{9.8} \approx \frac{53.10}{9.8} \approx 5.42\,\text{s} \\
t_2 &= \frac{17.32 - 35.78}{9.8} \approx \frac{-18.46}{9.8} \approx -1.88\,\text{s}
\end{aligned} t 1 t 2 = 9.8 17.32 + 35.78 ≈ 9.8 53.10 ≈ 5.42 s = 9.8 17.32 − 35.78 ≈ 9.8 − 18.46 ≈ − 1.88 s
The negative time is not physically meaningful for our scenario, so the impact time is:
t hit ≈ 5.42 s \boxed{t_{\text{hit}} \approx 5.42\,\text{s}} t hit ≈ 5.42 s
4. Horizontal Distance at Impact
We now evaluate x ( t ) x(t) x ( t ) at t = t hit t = t_{\text{hit}} t = t hit :
x hit = v 0 x t hit = 10 ⋅ 5.42 ≈ 54.2 m \begin{aligned}
x_{\text{hit}} &= v_{0x} t_{\text{hit}} = 10 \cdot 5.42 \approx 54.2\,\text{m}
\end{aligned} x hit = v 0 x t hit = 10 ⋅ 5.42 ≈ 54.2 m
So the ball lands about 54.2 meters horizontally from the point directly below the launch point (the base of the building).
5. Final Answer
Time when the ball hits the ground : t ≈ 5.42 s \boxed{t \approx 5.42\,\text{s}} t ≈ 5.42 s
Horizontal distance from the building : x ≈ 54.2 m \boxed{x \approx 54.2\,\text{m}} x ≈ 54.2 m
6. What the Visualization Shows
This interactive canvas illustrates:
Trajectory curve : The full parabolic path from the top of the building until just after impact.
Building : A vertical line at x = 0 x=0 x = 0 with a height of 50 m.
Dynamic projectile : A neon ball moving along the path, animated in real time.
Ground line : The horizontal axis (y = 0).
Impact marker : A highlight where the ball reaches the ground.
Widgets
You can adjust:
The initial speed v 0 v_0 v 0
The launch angle θ \theta θ
The building height h 0 h_0 h 0
The gravity g g g
A time-scrubber (to freeze and inspect the motion at a specific time) or let it play automatically.
Mathematically, the visualization uses the general formulas:
v 0 x = v 0 cos ( θ ) v 0 y = v 0 sin ( θ ) x ( t ) = v 0 x t y ( t ) = h 0 + v 0 y t − 1 2 g t 2 \begin{aligned}
v_{0x} &= v_0 \cos(\theta) \\
v_{0y} &= v_0 \sin(\theta) \\
x(t) &= v_{0x} t \\
y(t) &= h_0 + v_{0y} t - \tfrac12 g t^2
\end{aligned} v 0 x v 0 y x ( t ) y ( t ) = v 0 cos ( θ ) = v 0 sin ( θ ) = v 0 x t = h 0 + v 0 y t − 2 1 g t 2
The impact time is computed each frame by solving y ( t ) = 0 y(t) = 0 y ( t ) = 0 using the quadratic formula, and the scale automatically adjusts to fit the entire motion (from the building top to the landing point) onto the canvas.